NASA Drone to Probe Ozone Loss
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Water may play a critical role in controlling the ozone gas high up in Earth's atmosphere that can act as a greenhouse gas or protect living things on the surface below from the sun's harmful ultraviolet rays, depending on where in the atmosphere it is found.
To better understand how water vapor and ozone interact, NASA plans to send a remote-controlled plane laden with monitoring equipment into the stratosphere — the layer of the atmosphere where protective ozone is found — above the tropics.
The drone will crisscross the tropopause, the boundary between the troposphere (they layer of the atmosphere we breathe and where most weather occurs), and the stratosphere. The boundary is a fluid layer whose thickness can change and depends on the latitude it is located over but that is generally found some 8 to 11 miles (5 to 7 kilometers) above Earth's surface.
In the middle reaches of the troposphere, ozone is a greenhouse gas, trapping heat and contributing to smog. But high in the troposphere and the stratosphere, the familiar ozone layer protects the planet from harmful UV radiation.
When storms punch water vapor through the tropopause, into the stratosphere, scientists suspect chemical reactions between water and free radicals such as chlorine may zap and destroy the protective ozone. The NASA experiment will sample this layer near the equator off the coast of Central America where tall thunderstorms often occur.
The flights, which start this month, are the first of a multiyear campaign to study how changes in water vapor in the stratosphere can affect global climate. The Airborne Tropical Tropopause Experiment (ATTREX) relies on a Global Hawk drone, which can cruise for 30 hours from its home at Edwards Air Force Base in California. The aircraft are also used by the U.S. Air Force and Navy.
Predictions of stratospheric humidity changes are uncertain because of gaps in the understanding of the physical processes occurring in the tropical tropopause layer, NASA said in a statement.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"The ATTREX payload will provide unprecedented measurements of the tropical tropopause," Eric Jensen, ATTREX principal investigator, said in a statement. "This is our first opportunity to sample the tropopause region during winter in the Northern Hemisphere when it is coldest and extremely dry air enters the stratosphere."
Reach Becky Oskin at boskin@techmedianetwork.com. Follow her on Twitter @beckyoskin. Follow OurAmazingPlanet on Twitter @OAPlanet. We're also on Facebook and Google+.

