Mysterious 'ancient heart' of the Milky Way discovered using Gaia probe

The Milky Way's central region, where Sagittarius and the group of ancient stars can be found, above Telluride, Canada.
The Milky Way's central region, where Sagittarius and the group of ancient stars can be found, above Telluride, Canada. (Image credit: John Sirlin/Alamy Stock Photo)

Astrophysicists investigating the origins of the Milky Way may have discovered our galaxy’s ‘old heart’ — the original, ancient nucleus around which all of its stars and planets grew.

The collection of 18,000 of our galaxy’s oldest stars are located in the constellation Sagittarius are from the Milky Way’s protogalaxy — a primordial mass of gas and dust forming the first stars of a young galaxy — that is more than 12.5 billion years old. Accounting for an estimated 0.2% of our galaxy's total mass, the group is the kernel around which all of the Milky Way eventually grew, the researchers found. The findings were published on Sept. 8 on the preprint server arXiv, and are yet to be peer-reviewed.

"It has long been believed (on the basis of theory and simulations) that the very oldest stars are at the very center of a galaxy. We have now shown them to be there in great numbers," study lead author Hans-Walter Rix, an astronomer at the Max Planck Institute for Astronomy in Heidelberg, Germany, told Live Science. "It's like doing archeology in an old city. We have shown that the oldest and most primitive ruins are at the 'modern' city center."

Finding our galaxy's ancient heart began with searching the most crowded region, its central bulge, for the tiny proportion of stars around the same age as the roughly 13 billion-year-old Milky Way. 

But this is only one half of the story, as metal-poor stars within the Milky Way may also have come from smaller dwarf galaxies that smashed into and merged with our galaxy throughout its life. By examining these stars' paths through space while retaining only those that didn't veer out into the metal-poor regions of the galaxy, the researchers were able to separate out the stars that form the ancient heart from the stars that originated in a dwarf galaxy. 

This left researchers with some of the original skeleton of stars around which the Milky Way grew — a population they estimate to be between 50 million to 200 million times as massive as our own sun. As heavier stars die faster than smaller ones, the remaining stars are on average around 1.5 times lighter than the sun, according to the researchers.

"These stars make up about half of the total stellar mass once born," Rix said. "So, about half of the stars [from the protogalaxy] survive to date."

The researchers’ examination of the Milky Way's now-exposed ancient heart revealed two things. Firstly, as stars of the old protogalaxy rotate much less around the galactic center compared with younger stars, it confirms past observations that the Milky Way's core began its life stationary, eventually picking up rotational speed as the galaxy's center of mass grew.

And secondly, in spite of multiple mergers with smaller galaxies, the close bunching of stars in the Milky Way's center points to its core not having been invaded by collisions from other galaxies.

"The Milky Way never has been shook up dramatically," Rix said. "Our galaxy has lived a sheltered life."

With further study, the researchers hope the ancient heart can teach them even more about our galaxy's earliest years, such as the types of supernovas that must have exploded during the time of its creation to produce the proportions of early chemical elements we see today.

TOPICS
Ben Turner
Acting Trending News Editor

Ben Turner is a U.K. based writer and editor at Live Science. He covers physics and astronomy, tech and climate change. He graduated from University College London with a degree in particle physics before training as a journalist. When he's not writing, Ben enjoys reading literature, playing the guitar and embarrassing himself with chess.