Scientists Built a New Microscope to Watch Cells, and the Footage Is Breathtaking
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
If you've ever taken a biology class, you've probably seen a cell; all you need is an old microscope and a single blob of liquid.
But do those cells you see in a lab behave differently than the trillions of cells swimming naturally through your body? Can a cell get stressed — or even camera shy — when removed from its natural environment? [Tiny Grandeur: Stunning Photos of the Very Small]
"This [question] raises the nagging doubt that we are not seeing cells in their native state, happily ensconced in the organism in which they evolved," Eric Betzig, a Nobel Prize-winning physicist and group leader at the Howard Hughes Medical Institute's Janelia Research Campus in Virginia, said in a statement.
That concern led Betzig and his colleagues on a quest to obtain the most candid, au naturel footage of living cells ever taken.
By combining two high-tech imaging processes, the team captured unbelievably clear, 3D footage of individual cells going about their microscopic business inside living tissues. The team primarily tested their new microscopy technique by tracking cells inside embryonic zebrafish, but also turned their lenses to nematodes, leaves and organoids derived from human stem cells — and you can see it all now.
In the feast of footage accompanying the researchers' resulting study (published yesterday, April 19, in the journal Science), a human cancer cell slides through blood vessels like a gelatinous John McClane moving through ceiling ducts. An orange immune cell gobbles up blue sugar molecules as it flickers and flames through the inner ear of an embryonic zebrafish. Cells divide, merge and migrate through the innermost canals of living organisms in stunningly crisp, multicolored detail.
For their new study, the researchers built a custom microscope that is like "three microscopes in one," according to a statement released with the paper. The rig relies on two complex microscopy methods. One technique, adaptive optics, involves intentionally deforming the microscope's mirror to compensate for distortions in the incoming picture. (This method is regularly used in telescopes for astronomy.)
Get the world’s most fascinating discoveries delivered straight to your inbox.
The second method is called lattice light-sheet microscopy, which repeatedly swipes a thin sheet of light over the target cell to capture a flurry of 2D images that can be stacked into a high-resolution, 3D composite. Combining these methods results in a "Frankenstein's monster" of microscopy, Betzig said — but the images the approach produces are undeniably cool.
Unfortunately, you won't see a microscope like this in your school science lab anytime soon. According to Betzig, the technology is complicated, expensive and cumbersome (the microscope Betzig's team used fills a table 10 feet, or 3 meters, long). Maybe within 10 years, Betzig said, this type of imaging will be more accessible to biologists. Until then, grab a microscopic bag of popcorn and enjoy the show.
Originally published on Live Science.

Brandon is the space / physics editor at Live Science. With more than 20 years of editorial experience, his writing has appeared in The Washington Post, Reader's Digest, CBS.com, the Richard Dawkins Foundation website and other outlets. He holds a bachelor's degree in creative writing from the University of Arizona, with minors in journalism and media arts. His interests include black holes, asteroids and comets, and the search for extraterrestrial life.
