'Invisible scaffolding of the universe' revealed in ambitious new James Webb telescope images
A team of researchers using the James Webb Space Telescope has produced the most detailed map of dark matter to date.
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Using the James Webb Space Telescope (JWST), astronomers have mapped the largest section of the universe's dark matter yet, deepening our understanding of how this mysterious substance shapes the cosmic landscape.
Dark matter is notoriously difficult to study because it does not interact with light. Astronomers can detect it only by looking at its gravitational effects on baryonic, or "ordinary," matter. Observations of these interactions reveal that there is about five times as much dark matter in the universe as normal matter.
The new study, published Jan. 26 in the journal Nature Astronomy, mapped a piece of sky in the Sextans constellation. Researchers pointed JWST at this space for 255 hours, constructing a picture of its visible matter, including stars, galaxies and cosmic dust. From these observations, they identified nearly 800,000 galaxies — 10 times more than ground-based telescopes have seen in the same region, and nearly twice as many as the Hubble Space Telescope has spotted there.
Next, the team charted how the mass of this area's invisible dark matter warped the space around it.
"Previously, we were looking at a blurry picture of dark matter," Diana Scognamiglio, an astrophysicist at NASA's Jet Propulsion Laboratory (JPL) and co-lead author of the paper, said in a statement. "Now, we're seeing the invisible scaffolding of the universe in stunning detail."
Where galaxies come from
This detailed map could give scientists a better idea of how dark matter has shaped the evolution of the universe.
Shortly after the Big Bang, dark matter and ordinary matter were probably evenly distributed throughout space. But over time, dark matter began to clump together. This, in turn, pulled the ordinary matter into increasingly dense pockets, where it eventually collected enough mass to spark star formation.
Get the world’s most fascinating discoveries delivered straight to your inbox.
In this way, dark matter was instrumental in creating the current layout and matter distribution of the cosmos. "This map provides stronger evidence that without dark matter, we might not have the elements in our galaxy that allowed life to appear," study co-author Jason Rhodes, a senior research scientist at JPL, said in the statement.
Scognamiglio and her team plan to keep mapping dark matter in the future. They intend to use NASA's Nancy Grace Roman Space Telescope, which is scheduled to launch later this year, to study an area 4,400 times the size of the region from the new study. However, Roman's map of dark matter will be significantly less detailed than JWST's.
Scognamiglio, D., Leroy, G., Harvey, D., Massey, R., Rhodes, J., Akins, H. B., Brinch, M., Berman, E., Casey, C. M., Drakos, N. E., Faisst, A. L., Franco, M., Fung, L. W. H., Gozaliasl, G., He, Q., Hatamnia, H., Huff, E., Hogg, N. B., Ilbert, O., . . . Weaver, J. R. (2026). An ultra-high-resolution map of (dark) matter. Nature Astronomy. https://doi.org/10.1038/s41550-025-02763-9

Joanna Thompson is a science journalist and runner based in New York. She holds a B.S. in Zoology and a B.A. in Creative Writing from North Carolina State University, as well as a Master's in Science Journalism from NYU's Science, Health and Environmental Reporting Program. Find more of her work in Scientific American, The Daily Beast, Atlas Obscura or Audubon Magazine.
You must confirm your public display name before commenting
Please logout and then login again, you will then be prompted to enter your display name.
