Fire and Brimstone Helped Form Mars Oceans
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
The longstanding mystery of how oceans once formed on Mars could be solved by fire and brimstone.
Specifically, researchers now suggest that ancient volcanoes could have released brimstone — now more commonly known as sulfur — that warmed up the red planet enough for liquid water oceans in the early days of Mars. These findings might also shed insight on the young Earth, including the origins of life, scientists added.
Evidence of liquid water on the surface of Mars roughly 3.8 billion years ago implies that although its surface temperature now averages -51 degrees F (-46 degrees C), it was once relatively warm. Scientists have often proposed the red planet was enveloped during its youth in an atmosphere rich in carbon dioxide. Carbon dioxide is a "greenhouse gas," meaning it traps heat from the sun, warming up worlds such as Earth.
However, past findings suggest "that no amount of carbon dioxide on its own can get early Mars above the freezing point of water," said Harvard University planetary geochemist Itay Halevy. Also, an atmosphere rich in carbon dioxide would have led to massive deposits of limestone and other carbonate rocks littering the surface of Mars. The absence of such rocks has been a major puzzle.
Now Halevy and his colleagues propose in the Dec. 21 issue of the journal Science that volcanic gases loaded with sulfur could help solve both the puzzle of the missing rocks and the mystery of how Mars got warm enough for oceans.
The surface of Mars contains much higher levels of sulfur than Earth. This brimstone came from volcanoes that once erupted on the red planet. Indeed, the largest volcano in the solar system, Olympus Mons, is on Mars.
Compounds such as sulfur dioxide and hydrogen sulfide in volcanic gases could have acidified the ancient oceans of Mars enough to prevent the formation of carbonates, thus explaining their absence on the surface, Halevy said. In addition, sulfur dioxide is a potent greenhouse gas. If the atmosphere of early Mars was a hundredth or even a thousandth of a percent sulfur dioxide, that might have been enough to warm the red planet up for oceans.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Halevy noted that Earth and Mars were quite similar in their early days, and that sulfur dioxide could explain the scarcity of carbonate rocks on our planet during the Archean eon roughly 4 billion to 2.5 billion years ago.
"This has implications for how life originated on Earth during that period," he told SPACE.com. "Were oceans more acidic than at present? This raises a lot more questions."
Further experiments and computational modeling is needed to support these ideas, Halevy added.

