Longevity Protein Discovered
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
A protein that can extend the lifetimes of worms could have implications for human longevity and development of cancers, a new study suggests.
Roundworms (C. elegans) born without the protien called arrestin lived a third longer than normal, while worms with triple the amount of the protein cut their lives short by one-third.
The findings could have implications for humans, because most proteins in worms have human counterparts, according to study researcher Jeffrey L. Benovic, professor and chair of the Department of Biochemistry and Molecular Biology at Thomas Jefferson University. For instance, the human version of one of these longevity proteins is PTEN, a well-known tumor suppressor.
"The links we have found in worms suggest the same kind of interactions occur in mammals although human biology is certainly more complicated," Benovic said. "We have much work to do to sort out these pathways, but that is our goal."
The roundworm is a useful model for studying human diseases and other aspects of human biology, because the worm is much simpler than humans but also has similarities to us. The worm, for example, has one arrestin gene, whereas humans have four. Worms only have 302 neurons compared with the 100 billion or so neurons in the human brain. In addition, their short lifespans of two to three weeks allows for timely observation of effects on longevity.
Taking advantage of this simplicity, Benovic and Aimee Palmitessa, a postdoctoral research fellow at the university, deleted the single arrestin gene in worms to see what would happen. To Palmitessa's surprise, these worms lived significantly longer. She also found that over-expressing arrestin in worms shortened their lifespan.
"A little less arrestin is good – at least for worms," Benovic said.
Get the world’s most fascinating discoveries delivered straight to your inbox.
This isn't the first discovery made regarding longevity in worms. Past research has shown that activity of the insulin-like growth factor-1 (IGF-1) receptor can influence longevity in worms. This same link has been found in fruit flies, mice and humans. Like arrestin, a little less IGF-1 receptor activity is good, Benovic said.
In this study, Benovic and colleagues found that in the worms, arrestin interacted with two other proteins that play a critical role in its ability to regulate longevity. One of those proteins is the tumor suppressor PTEN; mutations in PTEN are involved in a number of different cancers.
Even so, the connection between human arrestin and PTEN is not clear.
"We don't know at this point if human arrestins regulate PTEN function or if anything happens to arrestin levels during the development of cancer," Benovic said. "Do increasing levels turn off more PTEN, thus promoting cancer, or do levels decrease and allow PTEN to be more active?
"If it turns out to be the first scenario – that increasing amounts of arrestin turn off the tumor suppressor activity of PTEN, then it may be possible to selectively inhibit that process," he added.
The study, which will be published in the online edition of the Journal of Biological Chemistry, was funded in part by the National Institutes of Health.
- Top 10 Immortals
- 7 Ways the Mind and Body Change With Age
- Life-Extending Cocktail Cooked Up For Mice

