Radio Antenna Made of Plasma
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
A radio antenna made of electrified gas could lead to stealthy, jamming-resistant transmitters, research now reveals.
Electrified gas, or plasma, makes up stars and lightning and is what sheds light in fluorescent bulbs. Sealed glass, ceramic or even flexible plastic tubes of plasma can behave just like conventional metal antennas.
Scientists are now developing remarkably simple and rugged plasma antenna prototypes that could soon find use in the military or telecommunications.
These antennas only work when energized, effectively vanishing when turned off, with the plasma reverting back to normal gas. This is key for stealth on the battlefield—metal antennas can scatter incoming radar signals, giving away their presence.
In addition, to counteract jamming attempts, plasma antennas can rapidly adjust which frequencies they broadcast and pick up by changing how much energy the plasma is given. This way, they avoid interference from enemy signals. Metal antennas, on the other hand, are each forced to receive and transmit only a given range of frequencies, making them vulnerable to jamming.
The fact that plasma antennas can get reconfigured to broadcast and receive a wide range of frequencies also means "you can create a kind of 'all-in-one' antenna, with one plasma antenna performing the jobs of several metal antennas," researcher Theodore Anderson, CEO of plasma antenna company Haleakala R&D in Brookfield, Mass., told LiveScience. "We're pursuing telecommunications as well as military applications."
These plasma antennas use inert noble gases such as neon, and do not get very hot when turned on. Anderson and his colleagues are currently experimenting with plasma in glass tubes, but to make them more rugged, they plan in the future to use ceramic tubes encased in heat-resistant synthetic foam "almost as hard as steel," he said.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The scientists are currently developing a "smart" plasma antenna that can steer a beam of radio waves 360 degrees to scan a region and then find and lock onto transmitting antennas. A comparable radio array using metal antennas would be much larger and heavier, Anderson said. The scientists plan to complete their commercial prototype by the end of November 2008.
The researchers detailed their findings Nov. 12 at the American Physical Society's plasma physics division meeting in Orlando.
- Quiz: Great Inventions
- The Incredible Shrinking Radio
- Gallery: Micromachines

