Big Blobs Change View of Evolution
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
On a submersible dive off the Bahamas, Mikhail V. Matz of the University of Texas at Austin and several colleagues were seeking big-eyed, glowing animals adapted to darkness.
Yet as they cruised above the seafloor, the team was distracted by hundreds of bizarre, sediment-coated balls the size of grapes. Each sat at the end of a sinuous track in the seafloor ooze. Indeed, the balls appeared to have made the tracks; some even seemed to have rolled upslope.
The team collected specimens and identified the creatures as giant protozoans, Gromia sphaerica, each one a single large cell with an organic shell, or "test." When cleaned of sediment, the test feels like grape skin, but squishier, Matz says.
Surprisingly, the tracks on the Bahamian seafloor resemble grooves found in sedimentary rocks formed as long as 1.8 billion years ago. The ancient grooves, bisected by a low ridge, had constituted the only evidence that multicellular, bilaterally symmetrical animals, such as worms, might have evolved so early in Earth's history.
Matz's discovery [of modern tracks apparently left by G. sphaerica] suggests that protozoans could have made those fossil traces rather than more advanced animals, which probably appeared much later. The next earliest evidence of multicellularity and bilateralism in animals occurs in fossils 580 million and 542 million years old, respectively.
G. sphaerica are rhizopods, an ancient protozoan group. Matz is planning further studies of the species, about which little is known.
The findings were detailed in the journal Current Biology in November.
Get the world’s most fascinating discoveries delivered straight to your inbox.
- Video: Fish Has See-Through Head
- Spookfish Have World's Strangest Eyes
- Top 10 Amazing Animal Abilities
