Incredibly detailed video shows DNA twisting into weird shapes to squeeze into cells
Scientists recently captured a high-resolution video of DNA shimmying into weird shapes in order to squeeze inside cells.
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Scientists recently captured a high-resolution video of DNA shimmying into weird shapes in order to squeeze inside cells.
In 1952, Rosalind Franklin produced the first indirect picture of DNA by studying how X-rays bounce off these fundamental molecules. But it wasn't until 2012 that scientists captured a direct photo of DNA using an electron microscope, Live Science previously reported.
Now, a group of researchers in the United Kingdom has captured high-definition videos of DNA in motion using a combination of advanced microscopy and simulations. But they weren't just playing paparazzi to the building blocks of life — they were trying to understand how DNA moves to squeeze itself into cells.
Related: Code of life: photos of DNA structures
Human cells contain about 6.6 feet (2 meters) of DNA. Considering human cells are on the order of micrometers, DNA has to be really good at "supercoiling" or bending and folding itself to tightly pack inside the cell. But until recently, technology wasn't good enough for scientists to clearly see what the DNA structure looked like as it supercoiled, the authors wrote in the study.
To answer this question, the new study's authors looked to "DNA minicircles" isolated and engineered from bacteria. These circular DNA structures are also found in human cells, and their function is largely unknown. The researchers used these ring structures because scientists can twist them in a way that wouldn't have worked with long strands, DNA's most common form, according to a statement.
To see the movements in detail, the researchers used a combination of supercomputer simulations and atomic force microscopy, in which a sharp tip glides across the surface of the molecule and measures the forces pushing back on the tip to outline the structure.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"Seeing is believing, but with something as small as DNA, seeing the helical structure of the entire DNA molecule was extremely challenging," study lead author Alice Pyne, a lecturer in polymers and soft matter at the University of Sheffield in the U.K., who captured the new footage, said in the statement. "The videos we have developed enable us to observe DNA twisting in a level of detail that has never been seen before."
The microscope images were so detailed that they could see the double-helix structure of the DNA. After researchers combined these images with simulations, they could see the position of every single atom in the DNA as it moved, according to the statement.
Interestingly, DNA in its relaxed form barely moved. But when twisted — as it normally does when squeezing into a cell — the DNA morphed into many other shapes, according to the statement. These various shapes influenced how the DNA molecule interacted with and bound to other DNA molecules around it, the authors wrote in the paper.
Lynn Zechiedrich, a professor at the Baylor College of Medicine in Houston, Texas, who provided the minicircles for the study, previously discovered how to use these ring structures as vectors for gene therapy by inserting small genetic messages into the rings.
The study researchers "have developed a technique that reveals in remarkable detail how wrinkled, bubbled, kinked, denatured and strangely shaped they are," Zechiedrich, who wasn't directly involved in the study, said in the statement. "We have to understand how supercoiling, which is so important for DNA activities in cells, affects DNA in hope that we can learn how to mimic or control it someday."
The findings were published Tuesday (Feb. 16) in the journal Nature Communications.
Originally published on Live Science.

Yasemin is a staff writer at Live Science, covering health, neuroscience and biology. Her work has appeared in Scientific American, Science and the San Jose Mercury News. She has a bachelor's degree in biomedical engineering from the University of Connecticut and a graduate certificate in science communication from the University of California, Santa Cruz.
