Levitating Magnet Brings Nuclear Fusion Closer to Reality
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Physicists may be one step closer to achieving a form of clean energy known as nuclear fusion, which is what happens deep inside the cores of stars.
A recent experiment with a giant levitating magnet was able to coax matter in the lab to extremely high densities — a necessary step for nuclear fusion.
When the density is high enough, atomic nuclei — the protons and neutrons of atoms — literally fuse together, creating a heavier element. And if the conditions are right that fusion can release loads of energy.
Depending on the mass of this element, energy could be created by fusion without any greenhouse gas emissions. So it could present a tantalizing clean power source, if scientists could achieve it.
"Fusion energy could provide a long-term solution to the planet’s energy needs without contributing to global warming," said Columbia University physicist Michael Mauel, co-leader of the recent study.
Such a power source would produce far less radioactive waste than current nuclear energy plants, which involve splitting atoms apart — called fission — the opposite of fusion.
For the new study scientists built a Levitated Dipole Experiment, or LDX, which involves suspending a giant donut-shaped magnet in midair using an electromagnetic field.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The magnet weighs about a half ton, and is made of superconducting wire coiled inside a stainless steel container about the size and shape of a large truck tire. The researchers used the magnet to control the motion of an extremely hot gas of charged particles, called a plasma, contained within its outer chamber.
The donut magnet creates a turbulence that causes the plasma to condense, instead of becoming more spread out, as usually happens with turbulence. Such "turbulent pinching" has been observed with space plasma in the magnetic fields of Earth and Jupiter, but never before in the lab.
The approach "could produce an alternative path to fusion," said co-leader Jay Kesner of MIT. Though to actually reach the density levels needed for fusion, scientists would have to build a much larger version of the experiment.
A key to the device is the fact that the LDX magnet is levitating, rather than suspended by any struts, because the magnetic field used to confine the plasma would be disturbed by any objects in its way.
In the experiment, the donut magnet was held aloft by a magnetic field from an electromagnet overhead, which is controlled by a computer based on readings from laser beam sensors. This set-up can adjust the position of the giant magnet to within half a millimeter.
Just in case the magnetic levitating system fails, the experiment included a cone-shaped support with springs underneath the magnet to catch it if need be.
The researchers detailed their findings this week in the journal Nature Physics.
- What is Nuclear Fusion?
- Power of the Future: 10 Ways to Run the 21st Century
- Video -Ride the Beamline to Nuclear Fusion

