Human Heart: Anatomy, Function & Facts

Credit: Dreamstime

The human heart is an organ that pumps blood throughout the body via the circulatory system, supplying oxygen and nutrients to the tissues and removing carbon dioxide and other wastes.

"The tissues of the body need a constant supply of nutrition in order to be active," said Dr. Lawrence Phillips, a cardiologist at NYU Langone Medical Center in New York. "If [the heart] is not able to supply blood to the organs and tissues, they'll die."

Human heart anatomy

In humans, the heart is roughly the size of a large fist and weighs between about 10 to 12 ounces (280 to 340 grams) in men and 8 to 10 ounces (230 to 280 grams) in women, according to Henry Gray's "Anatomy of the Human Body." 

The physiology of the heart basically comes down to "structure, electricity and plumbing," Phillips told Live Science.

Human heart
The human heart is about the size of a fist.
Credit: tlorna | Shutterstock

The human heart has four chambers: two upper chambers (the atria) and two lower ones (the ventricles), according to the National Institutes of Health. The right atrium and right ventricle together make up the "right heart," and the left atrium and left ventricle make up the "left heart." A wall of muscle called the septum separates the two sides of the heart.

A double-walled sac called the pericardium encases the heart, which serves to protect the heart and anchor it inside the chest. Between the outer layer, the parietal pericardium, and the inner layer, the serous pericardium, runs pericardial fluid, which lubricates the heart during contractions and movements of the lungs and diaphragm.

The heart's outer wall consists of three layers. The outermost wall layer, or epicardium, is the inner wall of the pericardium.  The middle layer, or myocardium, contains the muscle that contracts. The inner layer, or endocardium, is the lining that contacts the blood.

The tricuspid valve and the mitral valve make up the atrioventricular (AV) valves, which connect the atria and the ventricles. The pulmonary semi-lunar valve separates the right ventricle from the pulmonary artery, and the aortic valve separates the left ventricle from the aorta. The heartstrings, or chordae tendinae, anchor the valves to heart muscles.

The sinoatrial node produces the electrical pulses that drive heart contractions.

Human heart function

The heart circulates blood through two pathways: the pulmonary circuit and the systemic circuit.

In the pulmonary circuit, deoxygenated blood leaves the right ventricle of the heart via the pulmonary artery and travels to the lungs, then returns as oxygenated blood to the left atrium of the heart via the pulmonary vein.

In the systemic circuit, oxygenated blood leaves the body via the left ventricle to the aorta, and from there enters the arteries and capillaries where it supplies the body's tissues with oxygen. Deoxygenated blood returns via veins to the venae cavae, re-entering the heart's right atrium.

Of course, the heart is also a muscle, so it needs a fresh supply of oxygen and nutrients, too, Phillips said.

Biodigital human cardiovascular system
The cardiovascular system circulates blood from the heart to the lungs and around the body via blood vessels.
Credit: The BioDigital HumanTM developed by NYU School of Medicine and BioDigital Systems LLC

"After the blood leaves the heart through the aortic valve, two sets of arteries bring oxygenated blood to feed the heart muscle," he said. The left main coronary artery, on one side of the aorta, branches into the left anterior descending artery and the left circumflex artery. The right coronary artery branches out on the right side of the aorta.

Blockage of any of these arteries can cause a heart attack, or damage to the muscle of the heart, Phillips said. A heart attack is distinct from cardiac arrest, which is a sudden loss of heart function that usually occurs as a result of electrical disturbances of the heart rhythm. A heart attack can lead to cardiac arrest, but the latter can also be caused by other problems, he said.

The heart contains electrical "pacemaker" cells, which cause it to contract — producing a heartbeat.

"Each cell has the ability to be the 'band leader' and [to] have everyone follow," Phillips said. In people with an irregular heartbeat, or atrial fibrillation, every cell tries to be the band leader, he said, which causes them to beat out of sync with one another.

A healthy heart contraction happens in five stages. In the first stage (early diastole), the heart is relaxed. Then the atrium contracts (atrial systole) to push blood into the ventricle. Next, the ventricles start contracting without changing volume. Then the ventricles continue contracting while empty. Finally, the ventricles stop contracting and relax. Then the cycle repeats. 

Valves prevent backflow, keeping the blood flowing in one direction through the heart.

Facts about the human heart

  • A human heart is roughly the size of a large fist.
  • The heart weighs between about 10 to 12 ounces (280 to 340 grams) in men and 8 to 10 ounces (230 to 280 grams) in women.
  • The heart beats about 100,000 times per day (about 3 billion beats in a lifetime).
  • An adult heart beats about 60 to 80 times per minute.
  • Newborns' hearts beat faster than adult hearts, about 70 to 190 beats per minute.
  • The heart pumps about 6 quarts (5.7 liters) of blood throughout the body.
  • The heart is located in the center of the chest, usually pointing slightly left.

Additional resources

Follow Tanya Lewis on Twitter. Follow us @livescience, Facebook & Google+.

Editor's Recommendations

More from LiveScience
Author Bio
Tanya Lewis, LiveScience Staff Writer

Tanya Lewis

Tanya has been writing for Live Science since 2013. She covers a wide array of topics, ranging from neuroscience to robotics to strange/cute animals. She received a graduate certificate in science communication from the University of California, Santa Cruz, and a bachelor of science in biomedical engineering from Brown University. She has previously written for Science News, Wired, The Santa Cruz Sentinel, the radio show Big Picture Science and other places. Tanya has lived on a tropical island, witnessed volcanic eruptions and flown in zero gravity (without losing her lunch!). To find out what her latest project is, you can visit her website.
Tanya Lewis on
Contact tanyalewis314 on Twitter Contact Tanya Lewis by EMail