April 8 total solar eclipse: Why this eclipse repeats itself every 54 years
The total solar eclipse on April 8 is part of a repeating pattern of eclipses that last visited North America in 1970, and will visit again in 2078. Here's why the same eclipse repeats every 54 years.
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
When the moon's central shadow races at more than 1,500 mph (2,400 km/h) across North America on April 8 to cause a total solar eclipse, the resulting spectacle will be both unique and part of a progressing cycle.
This path of totality (the path of the moon's dark shadow across the face of the Earth) will be narrow, at just 115 miles (185 kilometers) wide, and it will cross parts of Mexico, the U.S. and Canada in a never-to-be-repeated route across the continent, lasting just100 minutes. Only from within that path will viewers experience darkness during the daytime, dropping temperatures and nocturnal animal behavior — and only from within that path will it be possible to look at the totally eclipsed sun's beautiful corona with the naked eye. (Note: DO NOT look directly at the sun at any time other than totality without wearing a pair of certified solar eclipse glasses.)
For most of the 40 million people living in the path of totality, it will be a once-in-a-lifetime event, but solar eclipses are the product of a long-term pattern that repeats on far bigger timescales than human life.
Related: April 8 total solar eclipse: The best places to stargaze near the path of totality
All solar eclipses come in families called Saros. Every 223 lunations — orbits of the moon around Earth — a near-identical moon shadow is projected onto Earth's surface to cause an eclipse. That works out to 6,585.3 days, or 18 years, 11 days, 8 hours, according to NASA.
That eight hours is critical. It means that three solar eclipses following each other in the same Saros occur a third of the way around the globe. The total solar eclipse on April 8 is part of Saros 139, which was responsible for a total solar eclipse across Africa 18 years, 11 days, 8 hours earlier, on March 29, 2006. Precisely 18 years, 11 days, 8 hours after April 8, 2024 — on April 20, 2042 — the same Saros will produce a total solar eclipse in Asia.
Those eight hours, however, guarantee that a similar path of totality will revisit the same part of the globe every fourth repetition. This period of precisely 669 lunations — or 54 years, 33 days — is called the exeligmos.
Get the world’s most fascinating discoveries delivered straight to your inbox.
So the same celestial mechanics that will cause the total solar eclipse on April 8 produced a total solar eclipse in North America on March 7, 1970. That path of totality occurred slightly to the east, throwing Mexico, the U.S. (Florida, Georgia, South Carolina, North Carolina and Massachusetts) and Canada (Nova Scotia and Newfoundland) under the moon's shadow. After April 8, it will next visit North America again on May 11, 2078, when Mexico and the U.S. (Louisiana, Mississippi, Alabama, Florida, Georgia, South Carolina, North Carolina and Virginia) will experience totality.
But Saros do not last forever; across the centuries, they rise and fall across Earth's surface, eventually skipping off into space. Saros 139 has been producing solar eclipses since 1501 and will do so until 2763, but it will peak on July 16, 2186, when it will produce a totality lasting 7 minutes, 29 seconds — the longest total eclipse in 10,000 years, and until at least the year 6000.

Jamie Carter is a Cardiff, U.K.-based freelance science journalist and a regular contributor to Live Science. He is the author of A Stargazing Program For Beginners and co-author of The Eclipse Effect, and leads international stargazing and eclipse-chasing tours. His work appears regularly in Space.com, Forbes, New Scientist, BBC Sky at Night, Sky & Telescope, and other major science and astronomy publications. He is also the editor of WhenIsTheNextEclipse.com.
