How Do Enzymes Work?
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Enzymes are biological molecules (typically proteins) that significantly speed up the rate of virtually all of the chemical reactions that take place within cells.
They are vital for life and serve a wide range of important functions in the body, such as aiding in digestion and metabolism.
Some enzymes help break large molecules into smaller pieces that are more easily absorbed by the body. Other enzymes help bind two molecules together to produce a new molecule. Enzymes are highly selective catalysts, meaning that each enzyme only speeds up a specific reaction. [What Is Chemistry?]
The molecules that an enzyme works with are called substrates. The substrates bind to a region on the enzyme called the active site.
There are two theories explaining the enzyme-substrate interaction.
In the lock-and-key model, the active site of an enzyme is precisely shaped to hold specific substrates. In the induced-fit model, the active site and substrate don't fit perfectly together; instead, they both alter their shape to connect.
Whatever the case, the reactions that occur accelerate greatly — over a millionfold — once the substrates bind to the active site of the enzyme. The chemical reactions result in a new product or molecule that then separates from the enzyme, which goes on to catalyze other reactions.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Here's an example: When the salivary enzyme amylase binds to a starch, it catalyzes hydrolysis (the breakdown of a compound due to a reaction with water), resulting in maltose, or malt sugar.
Originally published on Live Science.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

