Mysterious Origins of Dark Sunspots Explained
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
By gazing at the edges of sunspots, astronomers now are pinpointing key details of how these mysterious dark marks form.
Sunspots are blotches on the sun that appear dark because they are cooler than the rest of the solar surface. Astronomers do know they are linked to intense magnetic activity on the sun, which can suppress the flow of hot matter, but much about their structure and behavior remains enigmatic.
The dark heart of a sunspot, called the umbra, is surrounded by a brighter edge known as the penumbra, which is made of numerous dark and light filaments more than 1,200 miles (2,000 kilometers) long. They are relatively thin, at approximately 90 miles (150 km) in width, making it difficult to resolve details that could reveal how they arise.
Now scientists have discovered these columns are rapid downflows and upflows of gas, matching recent theoretical models and computer simulations suggesting these filaments are generated by the movement of hot and cold gases known as convective flow. [Photos: Sunspots on Earth's Closest Star]
The researchers used the Swedish 1-meter Solar Telescope to focus on a sunspot on May 23, 2010. They found dark downflows of more than 2,200 miles per hour (3,600 kph) and bright upflows of more than 6,600 miles per hour (10,800 kph). The models suggest that columns of hot gas rise up from the interior of the sunspot, widen, cool and then sink downward while rapidly flowing outward.
"This is what we have been expecting to find, but we were maybe surprised about actually succeeding in seeing these flows," researcher Göran Scharmer, a solar physicist at the Royal Swedish Academy of Sciences and Stockholm University in Sweden, told SPACE.com.
In the future, the researchers hope to also measure the magnetic fields linked with these flows to learn more about how they cause such activity.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The scientists detailed their findings in a paper published online June 2 in the journal Science.
This story was provided by SPACE.com, a sister site to LiveScience. Follow SPACE.com contributor Charles Q. Choi on Twitter @cqchoi. Visit SPACE.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

