Massive Myanmar earthquake was super smooth and efficient — and it holds lessons for the 'Big One'
The fault that ruptured in the March quake was simple and mature, which allowed the quake's energy to shoot right to the surface.
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
A fault that ruptured in Myanmar in March, fracturing hundreds of miles of the ground, was extremely efficient in transferring energy from deep below the ground to the surface.
In many earthquakes, the subsurface moves more than the surface. But the quake on the Sagaing fault was different because the surface moved just as much as the rocks miles deep, a new study shows. This was likely because the Saigang Fault dates back to between 14 million and 28 million years ago.
"Over that vast time, the rough edges and bends in the fault have been ground down," first author Eric Lindsey, a geoscientist at the University of New Mexico, said in a statement. "Because it is so smooth and straight, the earthquake rupture could travel very efficiently across a huge distance."
When the magnitude 7.7 quake hit on March 28, it ruptured about 300 miles (500 kilometers) of ground — a remarkably long surface rupture. Typically, Lindsey said, earthquake ruptures are more on the order of 19 to 37 miles (30 to 60 km). This rupture came with very severe shaking, and more than 5,400 people died.
Because of the infrastructure damage from the quake and ongoing armed conflict in Myanmar, Lindsey and his colleagues turned to satellite imagery to study the event. They used both optical imagery and radar data from the European Space Agency's Sentinel-2 satellites to track ground motion down to a fraction of an inch.
Their findings, published Dec. 8 in the journal Nature Communications, showed that the earthquake was very efficient in transferring its energy up to the surface. Quakes originate deep underground. In the case of the Myanmar quake, the rupture started 6 miles (10 km) or so deep. Most of the time, the underground movement doesn't entirely transfer to the surface — a phenomenon called "shallow slip deficit." (Slip is the movement of one side of the fault against the other.) In the Myanmar quake, there was no shallow slip deficit.
"The massive amount of slip that happened miles underground was transferred 100% to the surface," Lindsey said.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The ground surface on one side of the fault moved 10 to 15 feet (3 to 4.5 meters) in relation to the other. This movement was even caught on camera in a first-of-its-kind video.
Because of the efficiency of the energy transfer from deep underground to the surface, a quake on a mature fault like the one that hit Myanmar may cause more ground shaking than a quake on a more jagged fault line, Lindsey explained.
"The significance lies in safety," he said. "This earthquake showed us that mature faults can be much more efficient at transmitting energy to the surface than younger ones, which has direct implications for how we build infrastructure to withstand the 'Big One' in the United States."

Stephanie Pappas is a contributing writer for Live Science, covering topics ranging from geoscience to archaeology to the human brain and behavior. She was previously a senior writer for Live Science but is now a freelancer based in Denver, Colorado, and regularly contributes to Scientific American and The Monitor, the monthly magazine of the American Psychological Association. Stephanie received a bachelor's degree in psychology from the University of South Carolina and a graduate certificate in science communication from the University of California, Santa Cruz.
You must confirm your public display name before commenting
Please logout and then login again, you will then be prompted to enter your display name.
