Did the Cambrian explosion really happen?

An illustration showing Cambrian creatures in a colorful explosion
The Cambrian explosion is often presented as a chaotic moment in early evolutionary history (Image credit: canbedone via Getty Images)

A cursory flip through any high school biology textbook will inevitably surface a mention of the Cambrian explosion, a period about 540 million to 520 million years ago during which many animal groups first sprang into life and diversified. The event is frequently described as rapid and prolific, evoking a chaotic moment in early evolutionary history. 

But was there really a dramatic burst of biodiversity on Earth during this time? 

Thomas Servais, a paleontologist and research director at the French National Center for Scientific Research (CNRS), and colleagues published a 2023 paper in Palaeogeography, Palaeoclimatology, Palaeoecology arguing that the Cambrian explosion didn't happen in the way it's popularly portrayed. It wasn't truly an explosion, he told Live Science, but rather a gradual increase in biodiversity that took place throughout the early Paleozoic era (541 million to 251.9 million years ago). The appearance of an "explosion," he said, is really an artifact of the biases scientists have when studying the past. 

Researchers have unearthed numerous fossils from the Cambrian period. (Image credit: NPS)

Karma Nanglu, a paleontologist at Harvard University who studies Cambrian and Ordovician fossils, told Live Science he understands why Servais and his colleagues would like to tamp down on the use of terms like "explosion" and "event," and said it's well-accepted in the field that biodiversity estimates may be influenced by sampling bias. "But to my mind, I still do think there is actually quite good evidence that there was a Cambrian explosion, as we would typically call it," he said.

Regardless of whether the databases are biased toward certain groups or areas, there is a general trend of increasing complexity that is visible in the animals themselves.

"It's not just that two species are equivalent to each other in terms of what they contribute to diversity, it's that species A and species B are drastically different from each other in terms of the way their bodies are organized, how they develop, what their ecological role might be, how they live," Nanglu said. "And to that point, I think there's direct evidence that you can read straight from the rocks.

The causes for this biodiversification aren't fully known, but scientists have a few ideas. During the Precambrian, the supercontinent Rodinia broke apart into pieces, including Gondwana (modern-day Antarctica, South America, Africa, Australia, India and New Zealand) and Laurentia (most of North America). During this time, oxygen levels in the ocean increased, and there was a greater proportion of warm, shallow, tropical coastline — the perfect conditions for new species to evolve and later be fossilized in. A similar hypothesis has been studied for the breakups of the supercontinents Pannotia and Pangaea much later, and researchers have identified a link between the fracturing and animal diversity in the Phanerozoic eon (541 million years ago to the present). 

Amanda Heidt
Live Science Contributor

Amanda Heidt is a Utah-based freelance journalist and editor with an omnivorous appetite for anything science, from ecology and biotech to health and history. Her work has appeared in Nature, Science and National Geographic, among other publications, and she was previously an associate editor at The Scientist. Amanda currently serves on the board for the National Association of Science Writers and graduated from Moss Landing Marine Laboratories with a master's degree in marine science and from the University of California, Santa Cruz, with a master's degree in science communication.