Giant Glaciers Can Shrink Rapidly
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Huge glaciers like those in Greenland and Antarctica can shrink or retreat rapidly, a new study of a prehistoric glacier suggests.
An ancient glacier in the Canadian Arctic rapidly retreated in just a few hundred years, according to new findings by paleoclimatologists at the University at Buffalo. The results are detailed today in the journal Nature Geoscience.
The study provides one of the few explicit confirmations that this phenomenon occurs, the scientists said.
Should the same conditions recur today, which the researchers said in a statement "is very possible," they would result in sharply rising global sea levels, which would threaten coastal populations.
"A lot of glaciers in Antarctica and Greenland are characteristic of the one we studied in the Canadian Arctic," said Jason Briner, assistant professor of geology in the UB College of Arts and Sciences and lead author on the paper. "Based on our findings, they, too, could retreat in a geologic instant."
The new findings will allow scientists to more accurately predict how global warming will affect ice sheets and the potential for rising sea levels in the future, by developing more robust climate and ice sheet models.
Briner said the findings are especially relevant to the Jakobshavn Isbrae, Greenland's largest and fastest moving tidewater glacier, which is retreating under conditions similar to those he studied in the Canadian Arctic.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Acting like glacial conveyor belts, tidewater glaciers are the primary mechanism for draining ice sheet interiors by delivering icebergs to the ocean.
"These 'iceberg factories' exhibit rapid fluctuations in speed and position, but predicting how quickly they will retreat as a result of global warming is very challenging," said Briner.
That uncertainty prompted the UB team to study the rates of retreat of a prehistoric tidewater glacier, of similar size and geometry to contemporary ones, as way to get a longer-term view of how fast these glaciers can literally disappear.
The researchers used a special dating tool at UB to study rock samples they extracted from a large fjord that drained the ice sheet that covered the North American Arctic during the past Ice Age.
The samples provided the researchers with climate data over a period from 20,000 years ago to about 5,000 years ago, a period when significant warming occurred.
"Even though the ice sheet retreat was ongoing throughout that whole period, the lion's share of the retreat occurred in a geologic instant -- probably within as little as a few hundred years," said Briner.
The UB research reveals that the period of rapid retreat was triggered once the glacier entered deep ocean waters, nearly a kilometer deep, Briner said.
"The deeper water makes the glacier more buoyant," he explained.
"Because the rates of retreat were so much higher in the deep fjord, versus earlier when it terminated in more shallow waters or on land, the findings suggest that contemporary tidewater glaciers in Greenland and Antarctica that are retreating into deep waters may begin to experience even faster rates of retreat than are currently being observed," said Briner.
Right now, Jakobshavn Isbrae is draining into waters that are nearly a kilometer deep, he said, which means that its current rates of retreat -- as fast as 10 kilometers in the past decade -- could continue for the next hundred years.
"If modern glaciers do this for several decades, this would rapidly raise global sea level, intercepting coastal populations and requiring vast re-engineering of levees and other mitigation systems," said Briner.
The research was funded by the National Science Foundation.

