Blood in Your Veins Is Not Blue — Here's Why It's Always Red
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Human blood is red because of the protein hemoglobin, which contains a red-colored compound called heme that's crucial for carrying oxygen through your bloodstream. Heme contains an iron atom that binds to oxygen; it's this molecule that transports oxygen from your lungs to other parts of the body.
Chemicals appear particular colors to our eyes based on the wavelengths of light they reflect. Hemoglobin bound to oxygen absorbs blue-green light, which means that it reflects red-orange light into our eyes, appearing red. That's why blood turns bright cherry red when oxygen binds to its iron. Without oxygen connected, blood is a darker red color.
Carbon monoxide, a potentially deadly gas, can also bind to heme, with a bond around 200 times stronger than that of oxygen. With carbon monoxide in place, oxygen can't bind to hemoglobin, which can lead to death. Because the carbon monoxide doesn't let go of the heme, your blood stays cherry red, sometimes making a victim of carbon monoxide poisoning appear rosy-cheeked even in death.
Sometimes, blood can look blue through our skin. Maybe you've heard that blood is blue in our veins because, when headed back to the lungs, it lacks oxygen. But this is wrong; human blood is never blue. The bluish color of veins is only an optical illusion. Blue light does not penetrate as far into tissue as red light. If the blood vessel is sufficiently deep, your eyes see more blue than red reflected light due to the blood's partial absorption of red wavelengths.
But blue blood does exist elsewhere in the animal world. It's common in animals such as squid and horseshoe crabs, whose blood relies on a chemical called hemocyanin, which contains a copper atom, to carry oxygen. Green, clear and even purple blood are seen in other animals. Each of these different blood types uses a different molecule to carry oxygen rather than the hemoglobin we use.
Despite exceptions, the majority of blood from animals is red. But that doesn't mean it's exactly the same as what courses through our veins. There are many variations of hemoglobin present in different species, which allows scientists to distinguish blood samples from various animals.
Over time, spilled blood that starts out red turns darker and darker as it dries, and its hemoglobin breaks down into a compound called methemoglobin. As time passes, dried blood continues to change, growing even darker thanks to another compound called hemichrome. This continual chemical and color change allows forensic scientists to determine the time a blood drop was left at a crime scene.
Get the world’s most fascinating discoveries delivered straight to your inbox.
In our lab, we're developing methods that look at the ratio of the different compounds that hemoglobin breaks down into. Then, using computer modeling, we can estimate the time since the blood was deposited to help investigators determine if a blood stain is relevant to a crime. If the blood is a year old, it might not be important to a crime committed yesterday.
Marisia Fikiet, Ph.D. student in chemistry, University at Albany, State University of New York and Igor Lednev, Professor of Chemistry, University at Albany, State University of New York
This article was originally published on The Conversation. Read the original article. Follow all of the Expert Voices issues and debates — and become part of the discussion — on Facebook, Twitter and Google +. The views expressed are those of the author and do not necessarily reflect the views of the publisher. This version of the article was originally published on Live Science.
