
Slide 1 of 23
Introduction
Mathematical equations aren't just useful — many are quite beautiful. And many scientists admit they are often fond of particular formulas not just for their function, but for their form, and the simple, poetic truths they contain.
While certain famous equations, such as Albert Einstein's E = mc^2, hog most of the public glory, many less familiar formulas have their champions among scientists. LiveScience asked physicists, astronomers and mathematicians for their favorite equations; here's what we found:

General relativity
Slide 2 of 23 
General relativity
The equation above was formulated by Einstein as part of his groundbreaking general theory of relativity in 1915. The theory revolutionized how scientists understood gravity by describing the force as a warping of the fabric of space and time.
"It is still amazing to me that one such mathematical equation can describe what spacetime is all about," said Space Telescope Science Institute astrophysicist Mario Livio, who nominated the equation as his favorite. "All of Einstein's true genius is embodied in this equation." [Einstein Quiz: Test Your Knowledge of the Genius]
"The righthand side of this equation describes the energy contents of our universe (including the 'dark energy' that propels the current cosmic acceleration)," Livio explained. "The lefthand side describes the geometry of spacetime. The equality reflects the fact that in Einstein's general relativity, mass and energy determine the geometry, and concomitantly the curvature, which is a manifestation of what we call gravity." [6 Weird Facts About Gravity]
"It's a very elegant equation," said Kyle Cranmer, a physicist at New York University, adding that the equation reveals the relationship between spacetime and matter and energy. "This equation tells you how they are related — how the presence of the sun warps spacetime so that the Earth moves around it in orbit, etc. It also tells you how the universe evolved since the Big Bang and predicts that there should be black holes."
Slide 3 of 23 
The Standard Model
Slide 4 of 23 
The Standard Model
Another of physics' reigning theories, the standard model describes the collection of fundamental particles currently thought to make up our universe.
The theory can be encapsulated in a main equation called the standard model Lagrangian (named after the 18thcentury French mathematician and astronomer Joseph Louis Lagrange), which was chosen by theoretical physicist Lance Dixon of the SLAC National Accelerator Laboratory in California as his favorite formula.
"It has successfully described all elementary particles and forces that we've observed in the laboratory to date — except gravity," Dixon told LiveScience. "That includes, of course, the recently discovered Higgs(like) boson, phi in the formula. It is fully selfconsistent with quantum mechanics and special relativity."
The standard model theory has not yet, however, been united with general relativity, which is why it cannot describe gravity. [Infographic: The Standard Model Explained]
Slide 5 of 23 
Calculus
Slide 6 of 23 
Calculus
While the first two equations describe particular aspects of our universe, another favorite equation can be applied to all manner of situations. The fundamental theorem of calculus forms the backbone of the mathematical method known as calculus, and links its two main ideas, the concept of the integral and the concept of the derivative.
"In simple words, [it] says that the net change of a smooth and continuous quantity, such as a distance travelled, over a given time interval (i.e. the difference in the values of the quantity at the end points of the time interval) is equal to the integral of the rate of change of that quantity, i.e. the integral of the velocity," said Melkana BrakalovaTrevithick, chair of the math department at Fordham University, who chose this equation as her favorite. "The fundamental theorem of calculus (FTC) allows us to determine the net change over an interval based on the rate of change over the entire interval."
The seeds of calculus began in ancient times, but much of it was put together in the 17th century by Isaac Newton, who used calculus to describe the motions of the planets around the sun.
Slide 7 of 23 
Pythagorean theorem
Slide 8 of 23