Antarctic Octopus's 'Blue Blood' Helps It Survive in Frigid Waters
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Octopuses in Antarctica survive subzero temperatures because of blue pigment in their blood, a new study finds.
The ice-cold temperatures in the Southern Ocean surrounding Antarctica range between 28.8 degrees Fahrenheit (minus 1.8 degrees Celsius) to 35.6 degrees F (2 degrees C). In such frigid conditions, animals have a harder time transporting oxygen throughout their bodies and therefore delivering it to tissues.
To cope, Antarctic octopuses use a copper-based protein called haemocyanin. It makes their blood run blue and is much more efficient at keeping their bodies properly oxygenated at freezing temperatures. [8 Crazy Facts About Octopuses]
"This is the first study providing clear evidence that the octopods' blue blood pigment, haemocyanin, undergoes functional changes to improve the supply of oxygen to tissue at subzero temperature," lead study author Michael Oellermann, a biologist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Germany, said in a statement.
To find out what keeps an octopus’s body oxygenated, Oellermann and his colleagues compared haemocyanin levels in an Antarctic octopus species (Paraledone charcoti) and in two species that live in warmer climates (Octopus pallidus in southeast Australia and Eledone moschata in the Mediterranean).
The Antarctic octopus had the highest concentration of haemocyanin in its blood compared with other species. At 50 degrees F (10 degrees C), the Antarctic octopus could release far more oxygen (76.7 percent), than the two warm-water octopuses (at 33 percent for the Octopus pallidus and 29.8 percent for the Eledone moschata).
Although the Antarctic octopus is far more adept at producing oxygen in cold waters than its warm-water counterparts, these animals actually thrive when the water is a balmy 50 degrees F (10 degrees C), rather than at 32 degrees F (0 degrees C), which is typical in the Southern Ocean’s lowest latitudes.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"This is important because it highlights a very different response compared to Antarctic fish to the cold conditions in the Southern Ocean," Oellermann said. "The results also imply that due to improved oxygen supply by haemocyanin at higher temperatures, this octopod may be physiologically better-equipped than Antarctic fishes to cope with global warming," he said.
The Antarctic octopus’s ability to adjust its blood oxygen supply to suit variable temperatures could help it cope with warming temperatures as a result of climate change. But, this "blue blood" also helps explain why different species of octopuses live in such diverse environments, ranging from the freezing waters around Antarctica to the warm equatorial tropics.
The study was published March 11 in the journal Frontiers in Zoology.
Follow Shannon Hall on Twitter @ShannonWHall. Follow Live Science @livescience, Facebook & Google+. Original article on Live Science.
