Breast Cancer Survival Predicted By Computer Model
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
A new computer model may help researchers better predict how long breast cancer patients will live, a new study suggests.
The model, which was developed in a researchers' contest, uses gene signatures — sets of genes that are all "turned on" at the same time in a patient's cancer — to estimate how long patients will live.
These signatures are actually present in many types of cancer, and the researchers identified them in earlier work. The genes in the signatures play roles in cancer growth, the ability of the cancer to invade tissues and the ability of the immune system to kill cancer cells, said study researcher Dimitris Anastassiou, director of Columbia University's Genomic Information Systems Laboratory.
To test how well the model worked for patients with breast cancer, the researchers entered it in a contest called the Sage Bionetworks/DREAM Breast Cancer Prognosis Challenge. The goal of the contest, which included 350 teams, was to build a model that could accurately predict breast cancer survival. The online contest employed crowdsourcing — teams could borrow ideas from each other to improve their models.
Researchers first developed their model using genetic and clinical information from about 2,000 women with breast cancer. They then tested their model on a new data set of 184 women with breast cancer. The researchers did not know how long these patients had lived.
The model by Anastassiou and colleagues worked the best. Given two patients, their model could predict which one would live longer 76 percent of the time. It also ranked patients based on how long it thought they would survive.
With more refinement, Anastassiou said the model could help researchers decide how to treat individual patients.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Anastassiou said he wants to conduct a study to see if the gene signatures in his model can be combined with, or replace some of the biomarkers researchers use today to better predict survival. Right now, the model is not ready to be used by doctors or patients.
The study is published today (April 17) in the journal Science Translational Medicine.
Pass it on: A new computer model may help researchers better predict breast cancer prognosis.
Follow Rachael Rettner @RachaelRettner. Follow MyHealthNewsDaily @MyHealth_MHND, Facebook & Google+.

Rachael is a Live Science contributor, and was a former channel editor and senior writer for Live Science between 2010 and 2022. She has a master's degree in journalism from New York University's Science, Health and Environmental Reporting Program. She also holds a B.S. in molecular biology and an M.S. in biology from the University of California, San Diego. Her work has appeared in Scienceline, The Washington Post and Scientific American.
