Warped Galaxies Reveal Signs of Universe's Hidden Dark Matter
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Warped visions of distant galaxy clusters are offering a reflection of the invisible matter inside them that astronomers are using to map the unseen side of the universe.
Using the Hubble Space Telescope, astronomers have observed the first of a number of galaxy clusters that they hope to use to build a cosmic census of hidden dark matter. Dark matter, thought to make up 98 percent of all matter in the universe, cannot be seen, only felt through its gravitational pull.
To find out where dark matter lies, and how much of it there is, scientists look for an effect called gravitational lensing. This bending of light is caused when mass — including dark matter — warps space-time, causing light to travel a crooked path through it. The end effect is a curvy, funhouse-mirror type view of distant cosmic objects.
The observed lensing is always stronger than it should be based on the visible matter alone. By compensating for this effect, researchers can deduce what component is caused by the presence of dark matter. [Spectacular Hubble Photos]
Scientists are planning to observe a total of 25 galaxy clusters under a project called CLASH (Cluster Lensing and Supernova survey with Hubble).
One of the first objects observed for the new census is the galaxy cluster MACS J1206.2-0847. This conglomeration of galaxies is one of the most massive structures in the universe, and its gigantic gravitational pull causes stunning gravitational lensing.
In addition to curving of light, gravitational lensing often produces double images of the same galaxy. In the new observation of cluster MACS J1206.2-0847, astronomers counted 47 multiple images of 12 newly identified galaxies.
Get the world’s most fascinating discoveries delivered straight to your inbox.
By conducting the survey, astronomers are attempting not just to weigh these distant behemoths, but to learn more about when and how they formed. Theory suggests that the first galaxy clusters came together between 9 billion and 12 billion years ago.
Some previous research suggests that dark matter is packed more densely inside galaxy clusters than previously thought. If the new study can confirm that, it may mean that the universe's galaxy clusters formed earlier than most scientists assume.
This story was provided by SPACE.com, sister site to LiveScience. You can follow SPACE.com senior writer Clara Moskowitz on Twitter @ClaraMoskowitz. Follow SPACE.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

