Device Purifies Air and Creates Energy All at the Same Time
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
A small innovation could have a big impact on air pollution. In Belgium, researchers have engineered a device that uses sunlight to purify polluted air and produce hydrogen gas that can be stored and used for power.
"We couple both processes together in one device," Sammy Verbruggen, a professor of bioscience engineering at the University of Antwerp, told Live Science. "Hydrogen production on one side and air purification on the other side."
Verbruggenis working with two teams of researchers who had been separately investigating both processes for years. At the University of Antwerp, the scientists had been testing different ways of combing light energy with nanomaterials to purify air. At the University of Leuven, another team had been working on a tiny fuel cell with a membrane that could produce hydrogen gas from water. [In Photos: World's Most Polluted Places]
Now, the two teams have merged their expertise to create this newest device, which could purify fouled air and produce energy at the same time.
Verbruggensaid the researchers are focusing on air polluted with volatile organic compounds (VOCs), which are small molecules produced by chemicals in adhesives, upholstery, carpeting, copy machines, cleaning fluids and more. In sufficient concentrations, VOCs can cause severe headaches, eye irritation, dizziness, nauseaand asthma attacks.
The small molecules can be found in the air of enclosed buildings that are not well-ventilated, according to the Environmental Protection Agency, which may include newly built high-rises to factories that manufacture goods like paint and carpeting.
"They can lead to a disease called the sick building syndrome," Verbruggensaid.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The prototype cell is a square with an active area that measures about 0.4 inches by 0.4 inches (1 centimeter by 1 cm). At one side of the device, a tube delivers polluted air into the cell. Light enters naturally through a transparent window that covers a membrane treated with a light-activated catalyst. Once polluted air and light meet at the membrane, the catalyst tears apart the small organic molecules.
In the process, protons are set free and seep through the membrane, collecting on the other side. There, a platinum catalyst converts them to hydrogen gas, according to the researchers. Meanwhile, the purified air exits through a second tube.
Verbruggen and his colleagues were able to purify air and create gas from a variety of organic compounds, including methanol, ethanol and acetic acid. The scientists are also conducting new experiments with acetaldehyde, a liquid used in the make acetic acid and perfumes. Verbruggen said the most obvious applications are in industries that produce a waste stream, such as manufacturers of paint or textiles.
"You can purify the waste streams so that they meet their environmental quota and at the same time recover the energy that was stored in those molecules," Verbruggen said. The gas produced could be used to power the lights or other machines in the factory, he added.
At the moment, the team has not come up with an engineering solution to collect and store the gas. That’s another step in the engineering process, and one that will need to be solved by further research and development, Verbruggen said.
"I'm more motivated to improve the cell's performance, right now," he said.
Currently, the membrane responds to ultraviolet rays in sunlight, which is only about 4 to 5 percent of the spectrum. But, if the researchers could modify the materials to make them respond to 40 or 50 percent of the solar spectrum, that would increase the efficiency of the cell as a whole, they said.
"Improving the environment is a driving force for us," Verbruggensaid. "If we can catch two flies at the same time — clean up the environment on one side and also provide a cleaner energy source — that's a net benefit, because there's no extra energy input to drive these reactions, just pure sunlight."
Original article on Live Science.

