It's Not Smoke, It's a Cirrus Cloud
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
In this satellite image, what might be mistaken for smoke from a forest fire is actually a wide plume of ice crystals in other words, a cirrus cloud, according to a NASA statement.
This particular cloud seems to defy the conventional description of cirrus as thin, wispy, often curly clouds. Cirrus generally form at high altitudes (near 20,000 feet, or about 6 kilometers), where temperatures are cold and water vapor is usually scarcer than at lower altitudes.
The plume captured in this image from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite on Oct. 30, 2002, was instigated by air flow over a handful of high peaks in southern California's Sierra Nevada Mountains.
For the air flowing in from the west, the mountains act like a ramp into higher and colder layers of the atmosphere, where water vapor solidifies into tiny ice crystals. The number and size of the ice particles depends on the air temperature, relative humidity, and the vertical speed of the rising air.
The length of this plume is rather unusual. Although topography can force air to rise quickly, gravity will also work quickly to draw the temporarily buoyant air back toward the Earth's surface (if the atmosphere is otherwise stable). As the air descends "downstream" of the mountains, it is generally warming and expanding, processes that favor cloud evaporation, not formation.
When scientists analyzed atmospheric conditions and weather models of the area at the time of the plume, they discovered that several factors contributed to the thickness and extent of the plume. A relatively thick layer of moist but cold air at high altitudes and strong terrain-driven updrafts created high concentrations of very small particles.
The presence of the ice crystals themselves reduced the air's relative humidity , which prevented the crystals from growing much larger. Smaller crystals have slower terminal velocities (the speed at which acceleration due to gravity and deceleration due to air resistance, or drag, are equal), and they were able to stay aloft for hundreds of kilometers downstream of the mountains.
Get the world’s most fascinating discoveries delivered straight to your inbox.

