Death-Defying Trick: Cells Return From the Brink of Death
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
This Research in Action article was provided to LiveScience in partnership with the National Science Foundation.
Apoptosis, sometimes called "cellular suicide," is a normal, programmed process of cellular self-destruction.
It helps shape our physical features and organs before birth, and it rids our bodies of unneeded or potentially harmful cells, including cancerous ones. But apoptosis also can kill too many cells after a heart attack or stroke, causing tissues to die. For these reasons, scientists want to better understand the process.
Cells come equipped with the instructions and instruments necessary for apoptosis. They keep these tools — proteins that are called proteases — carefully tucked away until a signal inside or outside the cell triggers the apoptosis.
What does apoptosis look like? First, the cell shrinks and pulls away from its neighbors. Then the surface of the cell can bulge, with fragments breaking away. The DNA in the cell's nucleus condenses until the nucleus itself disintegrates, followed by the entire cell.
Do cells ever defy their fate? Yes, according to new research that shows many cell types on the brink of self-destruction can bounce back after their apoptotic trigger is removed.
Scientists at Johns Hopkins University School of Medicine exposed healthy mouse liver cells to ethanol, a toxin that can induce cell death. Within hours, the cells showed signs of dying. But when the researchers washed away the ethanol, the shriveled cells plumped back up, smoothed out their membranes and regained normal organelles. The researchers observed this phenomenon in mouse brain and rat heart cells, and they called it anastasis — a Greek word for "rising to life."
Get the world’s most fascinating discoveries delivered straight to your inbox.
The changes during anastasis went beyond physical appearance. Gene activity patterns also reversed from apoptotic to healthy ones, and DNA that had been chopped up during apoptosis got stitched back together. Occasionally, though, mistakes were made, leading a small percentage of cells to grow abnormally and develop some hallmarks of cancer.
Since anastasis could be harnessed to prevent or treat conditions where cell survival or excess cell death is harmful, the researchers are continuing their investigations into the mechanisms behind it.
This research was supported by the National Institutes of Health. To see more images and videos of basic biomedical research in action, visit NIH's Biomedical Beat Cool Image Gallery.
Editor's Note: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. See the Research in Action archive.
