Lasers Spark Breakthrough in Neuron Regeneration
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
The key to curing debilitating diseases such as Alzheimer's and Parkinson's could lie in the use of precision of lasers. These lasers can build up the complex microscopic scaffolding needed to deliver and support lab-grown replacement cells. Much smaller and more intricate than existing scaffolding, these lasers give scientists a new level of control and flexibility.
The technology, developed by researchers at the University of Sheffield and the Institute of Electronic Structure and Laser, drastically improves scientists' ability to manipulate the scaffolds to serve specific functions. In the case of diseases such as Alzheimer’s, the scaffolds could be harnessed as vehicles that deliver cells to damaged locations along the peripheral nerves, spinal cord and brain, and incite neural regeneration.
"With these laser direct write techniques, the structure of the produced scaffolds can be optimized for different applications," said Frederik Claeyssens, one of the co-authors of the study. "For example, we can guide neurons to grow along a given direction, which is important for peripheral nerve repair."
To test the biocompatibility of the laser-designed structures, the scientists grew neuronal cells on the scaffolds and carefully observed how they developed and aligned. The results were extremely positive, with less than 10 percent of the cells dying after five days.
Though Claeyssens predicts it will be at least another decade before these laser-based techniques are widely available to battle neurodegenerative diseases, he and his colleagues remain optimistic about the future of their field.
"The population is aging and there will never be enough organ donors," said Maria Farsari, another researcher on the project. "Tissue engineering is the way forward."
This story was provided InnovationNewsDaily, a sister site to Live Science. Follow InnovationNewsDaily on Twitter @News_Innovation, or on Facebook.
Get the world’s most fascinating discoveries delivered straight to your inbox.
