The rarest black holes in the universe may be 'wandering' our galaxy — but scientists don't know how to detect them
Dozens of 'wandering' black holes could be tumbling through our galaxy right now, new simulations hint. Their existence could help solve a longstanding cosmic puzzle.
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
The Milky Way has millions of small black holes and one giant supermassive black hole at its center. But does the galaxy have any medium-sized black holes? New research suggests the answer is yes: Perhaps a dozen may inhabit the Milky Way, but they are wandering freely through space and are fiendishly difficult to detect.
For decades, researchers have wondered about the prevalence of intermediate-mass black holes (IMBHs). Certainly, every galaxy is capable of producing an enormous number — roughly a handful every century — of small black holes with masses of up to 100 or so times that of the sun. And it appears that when galaxies like the Milky Way first arrived on the cosmic scene, they already had companion supermassive black holes in their hearts. Our own supermassive black hole, Sagittarius A*, has a mass of 4.5 million suns.
But what about the IMBHs? Theoretically, they should have masses of 10,000 to 100,000 solar masses. Finding IMBHs — or disproving their existence — has enormous implications for our understanding of black hole growth and evolution. But so far, there have been only faint, sketchy hints of IMBHs residing in dwarf galaxies, and no direct evidence that they live in a galaxy like the Milky Way.
In April, a team of researchers at the University of Zurich in Switzerland explored whether our current simulations of the universe could conclusively predict if the Milky Way hosts a population of IMBHs. Their paper has been accepted for publication in the journal Monthly Notices of the Royal Astronomical Society.
Cannibal galaxies
Galaxies do not grow up alone. Instead, they develop through the cannibalization of their neighbors, by incorporating their stars — and any black holes — within their volumes. The Milky Way has consumed over a dozen dwarf galaxies, and probably many more, in its long history. Presumably, some of those dwarf galaxies held IMBHs. But the common assumption was that large black holes tend to slink down the centers of their host galaxies, where they go on to merge with the central supermassive black hole.
Through their models, the researchers saw a different story unfold. They used a simulation of the evolution of a Milky Way-like galaxy and found that it can contain somewhere between five and 18 "wandering" IMBHs, which are not located near the central core but are left to roam within the disk of the galaxy. The exact number of IMBHs depends on whether they are born near the core of a soon-to-be-consumed dwarf galaxy or in its outskirts.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Although the researchers were heartened to find that the Milky Way should host a population of IMBHs, they urged caution in interpreting their results. They could not conclusively state what masses these black holes should have or where they would ultimately reside. So, while the new research strongly hints that IMBHs are out there, we do not yet know where to look.

Paul M. Sutter is a research professor in astrophysics at SUNY Stony Brook University and the Flatiron Institute in New York City. He regularly appears on TV and podcasts, including "Ask a Spaceman." He is the author of two books, "Your Place in the Universe" and "How to Die in Space," and is a regular contributor to Space.com, Live Science, and more. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy.
You must confirm your public display name before commenting
Please logout and then login again, you will then be prompted to enter your display name.