Physicists Nudge Electrons, Move Toward Crazy-Fast Computers
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Physicists have nudged electrons to change their spin in just quadrillionths of a second, the fastest ever achieved and a basic-science feat that could lead to faster computer processing and storage.
Electrons have three basic properties: mass, electric charge and spin. The spin is a form of angular momentum, which relates to how an electron moves around the nucleus of an atom. An electron's spin comes in two flavors: up and down.
Manipulating electrons is important for computing since most data storage these days is magnetic and relies on aligning the spin of electrons in a material. In recent years, a new technology known as spintronics has emerged that aims to control both the spin and the electric charge of electrons to improve how information is stored. The technology relies on the rapid switching of magnetic fields, which can now be done within quadrillionths of a second, a new study shows.
"We may expect faster writing in hard drives and faster reading and writing in [computer memory] with even less power used," said Jigang Wang, a physicist at Ames Laboratory in Iowa and senior author of the study published today (April 3) in the journal Nature. The technology could someday be used, for example, to show extremely fast HD movies, Wang added.
Spintronics researchers have been faced with the hurdle of figuring out how to go from the gigahertz speed of today's conventional computer memory and logic systems to the terahertz speed. Doing so requires an understanding of what's happening during magnetic switching on very brief timescales. [Twisted Physics: 7 Mind-Blowing Findings]
To explore this, Wang and his colleagues shone super-short pulses of laser light on an unusual magnetic material, bumping the atoms in the material into an excited state and changing their spins. "If you change a very small portion of them, you dramatically change the properties of the material," Wang said.
The real achievement, though, was doing this about a thousand times faster than current technology. To visualize how the material changed its magnetic properties, the scientists used a special type of imaging to take snapshots of the process — similar to taking a photo under a strobe light. Using this technique, the researchers saw how the magnetization started developing during the laser pulses.
Get the world’s most fascinating discoveries delivered straight to your inbox.
On these very short timescales, conventional thermodynamics is not important, and quantum mechanics takes over, Wang said. Wang's colleagues at the University of Crete in Greece developed a theory to explain how the fast magnetic switching occurs.
Right now, this is very fundamental science, Wang said. There's a long way to go before it can be optimized for use in commercial computers. He declined to speculate on when the technology would be available, instead quoting the famous scientist Michael Faraday, who, when asked about the use of electromagnetism, replied, "Of what use is a newborn baby?"
Follow Tanya Lewis on Twitter and Google+. Follow us @livescience, Facebook & Google+. Original article on Live Science.

