Scientists manipulate quantum mechanics to slow down a chemical reaction by 100 billion times

A still of a slowed-down chemical reaction taken with a quantum computer.
A still of a slowed-down chemical reaction taken with a quantum computer. (Image credit: University of Sydney)

For the first time, scientists have directly observed a molecular dance that's crucial to basic chemical reactions such as photosynthesis. And they've done it by using a quantum computer to slow down a chemical reaction by a mind-boggling 100 billion times. 

The new study, published Aug. 28 in the journal Nature Chemistry, focused on a kind of molecular interaction known as a conical intersection. Conical intersections are points in the geometry of molecules where the energy between two surfaces is equal. They act a bit like funnels between electronic states, allowing for quick transitions that usher along chemical reactions. Conical intersections occur in a lot of reactions, including everyday ones like photosynthesis and the light-detecting reactions that take place in the retina.

"In nature, the whole process is over within femtoseconds," Vanessa Olaya Agudelo, a doctoral student in chemistry who co-authored the new research, said in a statement. "That's a billionth of a millionth — or one quadrillionth — of a second. Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds."

"Our experiment wasn't a digital approximation of the process — this was a direct analog observation of the quantum dynamics unfolding at a speed we could observe," study co-author Christophe Valahu, a physicist at the University of Sydney, said in the statement.

Understanding these ultrafast dynamics could yield new insight into chemical reactions for a variety of applications, the researchers said.

"It is by understanding these basic processes inside and between molecules that we can open up a new world of possibilities in materials science, drug design, or solar energy harvesting," Olaya Agudelo said. "It could also help improve other processes that rely on molecules interacting with light, such as how smog is created or how the ozone layer is damaged."

Stephanie Pappas
Live Science Contributor

Stephanie Pappas is a contributing writer for Live Science, covering topics ranging from geoscience to archaeology to the human brain and behavior. She was previously a senior writer for Live Science but is now a freelancer based in Denver, Colorado, and regularly contributes to Scientific American and The Monitor, the monthly magazine of the American Psychological Association. Stephanie received a bachelor's degree in psychology from the University of South Carolina and a graduate certificate in science communication from the University of California, Santa Cruz.