Volcano Drilling Team Get Magma Surprise at Iceland Volcano
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Geologists drilling an exploratory geothermal well into a volcano in Iceland got quite a surprise when the borehole filled with molten magma forcing the researchers to halt the drilling.
However, the sudden appearance of the molten rock wasn't all bad, according to Wilfred Elders, a professor emeritus of geology at the University of California, Riverside, who led the research team that was drilling into the Krafla volcano in 2009.
Roughly 95 percent of home heating and one-third of electric power in Iceland comes from geothermal sources from steam and hot water that occurs naturally in volcanic rocks and the team was investigating new ways to harness geothermal energy.
"We were drilling a well that was designed to search for very deep geothermal resources in the volcano. While the magma flow interrupted our project, it gave us a unique opportunity to study the magma and test a very hot geothermal system as an energy source," Elders said in a statement.
The team was planning to drill 2.7 miles (4.5 kilometers) into the volcano, but had to stop at 1.3 miles (2.1 km) when the magma began to flow into the borehole.
Elders and colleagues report in the March issue of the journal Geology that although the Krafla volcano, like all other volcanoes in Iceland , is basaltic (a volcanic rock containing 45 to 50 percent silica), the magma they encountered is a rhyolite (a volcanic rock containing 65 to 70 percent silica).
"Our analyses show that this magma formed by partial melting of certain basalts within the Krafla volcano," Elders said.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"The occurrence of minor amounts of rhyolite in some basalt volcanoes has always been something of a puzzle," Elders said. "It had been inferred that some unknown process in the source area of magmas, in the mantle deep below the crust of the Earth, allows some silica-rich rhyolite melt to form in addition to the dominant silica-poor basalt magma."
Elders explained that in geothermal systems, water reacts with and alters the composition of the rocks, a process called "hydrothermal alteration."
"Our research shows that the rhyolite formed when a mantle-derived basaltic magma encountered hydrothermally altered basalt, and partially melted and assimilated that rock," Elders said.
Elders believes it should be possible to find reasonably shallow bodies of magma , elsewhere in Iceland and the world, wherever young volcanic rocks occur.
"In the future, these could become attractive sources of high-grade energy," Elders said.

