How Earth Got its Oxygen

Earth from space.

The first half of Earth's history was devoid of oxygen, but it was far from lifeless. There is ongoing debate over who the main biological players were in this pre-oxygen world, but researchers are digging up clues in some of the oldest sedimentary rocks on the planet.

Most scientists believe the amount of atmospheric oxygen was insignificant up until about 2.4 billion years ago when the Great Oxidation Event (GOE) occurred. This seemingly sudden jump in oxygen levels was almost certainly due to cyanobacteria – photosynthesizing microbes that exhale oxygen.

When and how the oxygen-exhalers appeared is uncertain, due to the fact that the GOE was a complicated crossroads of global freezing, mineral upheavals and the flourishing of new species.

"We don't know what is cause and what is consequence," says Dominic Papineau of the Carnegie Institution of Washington. "Several things happened at the same time, so the story still isn't clear."

To help sort out the geologic plotline, Papineau is studying banded iron formations (BIFs), sedimentary rocks that formed at the bottom of ancient seas.

Papineau's research, which is supported by the NASA Exobiology and Evolutionary Biology Program, is focusing on specific minerals in the BIFs that may be tied to the life (and death) of ancient microbes.

Mining BIFs

The iron minerals within BIFs make up the world's largest source of iron ore. However, these rocks are valuable for more than just making steel. Geologists mine them for their rich historical record that spans from 3.8 billion to 0.8 billion years ago.

The origin of the oldest BIFs is, however, a bit of a mystery. The current consensus is that they required the help of organisms to form, but which ones? These simple single-celled sea creatures didn't leave us any bones or shells to pick through, but Papineau thinks there could still be mineral or geochemical fossils in the BIFs.

He and his colleagues have found carbonaceous material in BIFs associated with apatite, a phosphate mineral that is sometimes tied to biology. The implication is that the BIF builders were entombed in their own handiwork.

To verify this, Papineau's team will be studying the BIF carbon and comparing it to other carbonaceous-mineral associations known to be of non-biological origin, including minerals found in a Martian meteorite.

"This work has the potential to show that microbial biomass was associated and deposited together with the iron minerals," says Andreas Kappler from the University of Tuebingen in Germany, who was not involved in the research.

Early appearance of oxygen-exhalers

It is possible that these microbial BIF builders were cyanobacteria, since the oxygen from these microbes could have caused iron oxidation in the pre-GOE ocean.

But if the cyanobacteria appeared long before the GOE, why did it take several hundreds of millions of years for their oxygen exhalations to build up in the atmosphere?

Papineau and his colleagues may have found part of the answer in a complex interplay of biology and geology.

The early oxygen from cyanobacteria may have been destroyed by a preponderance of methane. The two gases react with each other to produce carbon dioxide and water.

"Oxygen can't accumulate in a methane-rich environment," Papineau says.

The methane is believed to have come from microbes called methanogens that spew out methane as a result of consuming carbon dioxide and hydrogen.

In this scenario, the methanogens and cyanobacteria shared the ancient ocean, but the methanogens had the upper hand – their methane emissions kept oxygen at bay, and also warmed the planet through a greenhouse effect. But then around the time of the GOE, these organisms went into decline, and the resulting methane-depleted atmosphere began to fill with oxygen from cyanobacteria.

No nickel to spare

Connecting the GOE to a methanogen decline has been done before, but there has been little evidence to support this hypothesis. Recently, however, Papineau and his collaborators reported in the journal Nature that the level of nickel in BIFs dropped significantly 2.7 billion years ago.

The implication is that the ocean's nickel abundance fell by 50 percent right before the GOE. This is significant because methanogens rely on nickel: it is a central ingredient to the metabolic enzymes involved in their methane production. When the nickel levels dropped, the methanogens presumably starved.

The nickel-famine scenario makes a pre-GOE evolution of cyanobacteria more plausible, but confirming this will take more evidence.

Kappler believes that studying the origin of the oldest BIFs could tell us when life evolved the ability to breathe out oxygen and thereby change the world forever.

Michael Schirber
Michael Schirber began writing for LiveScience in 2004 when both he and the site were just getting started. He's covered a wide range of topics for LiveScience from the origin of life to the physics of Nascar driving, and he authored a long series of articles about environmental technology. Over the years, he has also written for Science, Physics World, andNew Scientist. More details on his website.