Astronomers discover largest-known spinning structures in the universe
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
Tendrils of galaxies up to hundreds of millions of light-years long may be the largest spinning objects in the universe, a new study finds.
Celestial bodies often spin, from planets to stars to galaxies. However, giant clusters of galaxies often spin very slowly, if at all, and so many researchers thought that is where spinning might end on cosmic scales, study co-author Noam Libeskind, a cosmologist at the Leibniz Institute for Astrophysics Potsdam in Germany, told Space.com.
But in the new research, Libeskind and his colleagues found that cosmic filaments, or gigantic tubes made of galaxies, apparently spin. "There are structures so vast that entire galaxies are just specks of dust," Libeskind said. "These huge filaments are much, much bigger than clusters."
Related: The best Hubble Space Telescope images of all time!
Previous research suggested that after the universe was born in the Big Bang about 13.8 billion years ago, much of the gas that makes up most of the known matter of the cosmos collapsed to form colossal sheets. These sheets then broke apart to form the filaments of a vast cosmic web.
Using data from the Sloan Digital Sky Survey, the scientists examined more than 17,000 filaments, analyzing the velocity at which the galaxies making up these giant tubes moved within each tendril. The researchers found that the way in which these galaxies moved suggested they were rotating around the central axis of each filament.
The fastest the researchers saw galaxies whirl around the hollow centers of these tendrils was about 223,700 mph (360,000 kph). The scientists noted they do not suggest that every single filament in the universe spins, but that spinning filaments do seem to exist.
Get the world’s most fascinating discoveries delivered straight to your inbox.
The big question is, "Why do they spin?" Libeskind said. The Big Bang would not have endowed the universe with any primordial spin. As such, whatever caused these filaments to spin must have originated later in history as the structures formed, he said.
One possible explanation for this rotation is that as the powerful gravitational fields of these filaments pulled gas, dust and other material within them to collapse together, the resulting shearing forces might have spun up this material. Still, right now, "we're not really sure what can cause a torque on this scale," Libeskind said.
The scientists now seek to understand the origin of filament spin through computer simulations of how matter behaves on the largest cosmological sales. The researchers detailed their findings online June 14 in the journal Nature Astronomy.
Follow us on Twitter @Spacedotcom and on Facebook.

