What Do Shrink-Wrapped Thanksgiving Turkeys and the Higgs Boson Have in Common?
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
(Inside Science) — Each Thanksgiving, millions of Americans tote turkeys home from the store. If you find yourself plopping a fresh, shrink-wrapped bird into your cart, you can thank particle physicists for the sturdy, shelf life-extending packaging.
That's because the food industry makes shrink wrap using a tool first developed in physics labs: an electron accelerator.
To understand how the process works, imagine the atoms in the plastic as individuals at a large Thanksgiving dinner. Initially these people only hang out with others they already know, or the family members they know they like. (In shrink wrap, the "in-groups" are long strings of bonded atoms called polymer chains.) This initial configuration is weak, since the groups easily drift apart.
Now imagine an accelerated electron as an expert Thanksgiving host. It can zip through the gathering and break apart conversations, encouraging people to shake hands with others in different groups. The technical name for this process in plastics is cross-linking. It makes the plastic tougher and more heat-resistant.
Cross-linking is essential for making shrink wrap because it allows manufacturers to heat the plastic and stretch it into a thin film without it breaking or melting into a mess. When the film is cooled it retains the stretched-out shape. But make the film into a bag, drop a turkey (or other item) inside and reheat it, and the plastic will shrink, creating a tight seal with whatever is inside.
The plastic industry serves up a hearty helping of shrink wrap each year. And it's just a tiny portion of the overall market for industrial particle accelerators, which are also used to cross-link the protective plastic around electrical wiring, sterilize medical equipment and enhance the color of gemstones.
Industrial machines are cheaper and less powerful than famous particle accelerators such as the massive Large Hadron Collider in Europe, which physicists used in 2012 to confirm the existence of a particle called the Higgs boson. But industry accelerators represent a tangible way particle physics touches everyday life, and their applications are still expanding.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"Electron beams have the potential to treat wastewater, pave better roads and add to the flourishing and wealth of the modern economy," said Charles Thangaraj, an accelerator physicist at Fermilab’s Illinois Accelerator Research Center located outside of Chicago, which helps to transfer accelerator technologies developed at the lab to industry applications.
So, this Thanksgiving, as you pop your turkey out of its form-fitting plastic sheath, consider taking a moment to give thanks for the physics that makes it possible.
Inside Science News Service is supported by the American Institute of Physics.
