Can You See a Sonic Boom?
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
The breaking of the sound barrier is not just an audible phenomenon. In fact, Mach 1 can be beautiful.
The visual counterpart to a sonic boom, which sometimes but not always accompanies the breaking of the sound barrier, has also been seen with Apollo 11 moon-landing mission rocketed skyward in 1969.
The phenomenon is not well studied. Scientists refer to it as a vapor cone, shock collar, or shock egg, and it's thought to be created by what's called a Prandtl–Glauert singularity.
Here's what scientists think happens:
At sea-level pressure in 59-degree Fahrenheit air, sound travels 760 mph. As an aircraft surpasses this speed (Mach 1) the pressure of the air surrounding it approaches infinity.
A layer of water droplets occasionally gets trapped between two high-pressure surfaces of air flowing off the aircraft, scientists say. In humid conditions, condensation can gather in the trough between two crests of the sound waves produced by the jet. This effect does not necessarily coincide exactly with the breaking of the sound barrier, although it can.
For the record, on Oct. 14, 1947, U.S.A.F. Major Charles "Chuck" Yeager flew into aviation history by piloting a Bell XS-1 research plane to supersonic speeds. These days NASA is flying unmanned aircrafts at close to Mach 10 velocity. The origins of the Mach number stretch back before humans ever took flight, to 1887, when Austrian physicist Ernst Mach established his principles of supersonics. His famous Mach number is the ratio of an object's velocity to the velocity of sound, relative to the local environment.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Research and writing by Robert Roy Britt and Ben Mauk.
Off the coast of Pusan, South Korea, July 7, 1999, an F/A-18 Hornet breaks the sound barrier. CREDIT: U.S. Navy/Ensign John Gay

