Brainless Jellyfish Navigates with Specialized Eyes
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
The skyward gaze of one set of eyes belonging to box jellyfish provides evidence that these creatures -- which lack a conventional brain -- are capable of sophisticated behavior. New research has shown that one species of jellyfish uses one set of eyes to navigate and keep itself close to home.
"It is a surprise that a jellyfish -- an animal normally considered to be lacking both brain and advanced behavior -- is able to perform visually guided navigation, which is not a trivial behavioral task," said lead researcher Anders Garm of the University of Copenhagen. "This shows that the behavioral abilities of simple animals, like jellyfish, may be underestimated." [Image Gallery: Jellyfish Rule!]
Box jellyfish have 24 eyes of four different types, and two of them -- the upper and lower lens eyes -- can form images and resemble the eyes of vertebrates like humans. The other eyes are more primitive. It was already known that box jellyfish's vision allows them to perform simpler tasks, like responding to light and avoiding obstacles.
In the new study, scientists found that one species of the cube-shaped box jellyfish, Tripedalia cystophora, uses its upper lens eyes, which are mounted on four cuplike structures, to make sure it stays close to the prop roots of mangrove trees that define its habitat.
This species lives close to the surface in Caribbean mangrove swamps where they feed on tiny crustaceans called copepods that swarm in light shafts formed by openings in the mangrove canopy. If the jellyfish stray too far from the mangroves, they risk starvation, according to the researchers.
Garm and his colleagues' observations of freely swimming box jellyfish revealed that the structures holding their eyes remained oriented so that the upper lens eyes looks up regardless of the position of the rest of the jellyfish's body. They also found that the upper lens eyes have a vertically centered visual field that closely matches the angle necessary for them to see the terrestrial world above. (The world above is compressed by the refraction of the light coming into the water, so the 180-degree field compresses to 97 degrees. These jellyfish appeared to have a visual field of between 95 and 100 degrees.)
The researchers took photos from underwater looking upward to simulate the jellyfish’s view as it moves away from the mangroves. Using these and a model of the eye, they simulated the image formed in the retina at the back of it, finding that even at a distance of 32.8 feet (10 meters) the jellyfish could still detect the mangrove canopy.
Get the world’s most fascinating discoveries delivered straight to your inbox.
They then did a behavioral test using wild box jellyfish in Puerto Rico. When taken 16.4 feet (5 meters) out from their habitat, the jellies rapidly swam back toward the nearest trees. And when placed in a plastic tank under the canopy, the jellyfish swam randomly. But as the tank was moved away from the canopy, the jellyfish began attempting to head back toward it, a behavior that was strongest when they were at between 6.6 and 13.1 feet (2 to 4 meters) out into the lagoon. By the time they were 39.3 feet (12 meters) away, they swam randomly. And if the view of the canopy was obscured, the jellyfish lost their direction.
Eyes used for a single visual purpose may represent an early stage in the evolution of visual systems, and this system used by the box jellyfish may require less processing than a system in which a single set of eyes performs many functions -- like ours do, according to the researchers.
"The box jellyfish solution may thus be linked to the absence of a central brain, but it defeats the idea that a central brain is a prerequisite for advanced behavior," they write online April 28 in the journal Current Biology.

