Are Cheap Green Laser Pointers Dangerous?

Green laser pointers have become a popular consumer item, delivering light that's brighter to the eye than red lasers, but stories have circulated on the web about the potential hazards of inexpensive models.

A team led by physicist Charles Clark at the National Institute of Standards and Technology (NIST) recently put some numbers to the problem. In one case, the group found that a green laser pointer emitted almost twice its rated power level of light – but at invisible and potentially dangerous infrared wavelengths rather than green.

A new NIST study describes the nature of the problem and offers instructions for a home test using an inexpensive webcam that can detect excess infrared light from green lasers. 

Green alert

Late last year, the NIST research team purchased three low-cost green laser pointers advertised to have a power output of 10 milliwatts (mW).

Measurements showed that one unit emitted dim green light but delivered infrared levels of nearly 20 mW – powerful enough to cause retinal damage to an individual before he or she is aware of the invisible light.

NIST’s Jemellie Galang and her colleagues repeated the tests with several other laser pointers and found similarly intense infrared emissions in some but not all units.

Technical difficulties

The problem stems from inadequate procedures in manufacturing quality assurance, according to the research team.

Inside a green laser pointer, infrared light from a semiconductor diode laser pumps infrared light at a wavelength of 808 nanometers into a transparent crystal of yttrium orthovanadate doped with neodymium atoms, causing the crystal to lase even deeper in the infrared, at 1064 nm.

This light passes through a crystal of potassium titanyl phosphate (KTP), which emits light of half the wavelength: 532 nanometers, the familiar color of the green laser pointer.

However, if the KTP crystal is misaligned, little of the 1064-nanometer light is converted into green light, and most of it comes out as infrared. Excess infrared leakage can also occur if the coatings at both ends of the crystal that act as mirrors for the infrared laser light are too thin.

Solution at hand

The NIST team says this problem could be solved by incorporating an inexpensive infrared filter at the end of the laser, which could reduce infrared emissions by 100-1000 times depending on quality and cost.

Although these filters exist in modern digital cameras and more expensive green laser pointers, they often are left out of the inexpensive models.

The team demonstrates a home test that laser hobbyists could conduct to detect excessive infrared leakage, by using a common digital or cell phone camera, a compact disc, a webcam and a TV remote control.

Regardless, they say owners of the devices should never point the lasers at the eyes or aim them at surfaces such as windows, which can reflect infrared light back to the user – a particularly subtle hazard because many modern energy-saving windows have coatings designed specifically to reflect infrared.

•    Star Wars Creator Calls Off Duel over 'Lightsaber' Laser Pointer •    Navy Shoots Down Robotic Aircraft with Laser Beams •    7 Ordinary Things Turned Hi-Tech

Live Science Staff
For the science geek in everyone, Live Science offers a fascinating window into the natural and technological world, delivering comprehensive and compelling news and analysis on everything from dinosaur discoveries, archaeological finds and amazing animals to health, innovation and wearable technology. We aim to empower and inspire our readers with the tools needed to understand the world and appreciate its everyday awe.