Space Magnetism May Hold Secret to Fusion Power
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
New discoveries about magnetic field lines and the first-ever direct observation of their reconnection in space are offering hope that scientists will learn how to unlock fusion power as an energy source in the future.
"The reconnection processes in the [Earth's] magnetosphere and in fusion devices are the same animal," said James Drake, a University of Maryland physicist.
Space contains magnetic fields that direct the flow of plasma, an energetic fourth state of matter consisting of positive ions and electrons. The plasma particles normally follow the paths of the magnetic field lines like streams of cars following highways.
Magnetic reconnection can release that stored energy when two magnetic field lines bend towards each other and fuse to create new field lines. The effect is not unlike an earthquake forcibly realigning parallel highways into perpendicular routes and channeling cars along the newly created paths. Although some released plasma energy travels in a straight line — called a super-Alfvenic electron jet — other plasma particles fan out as though escaping the opening of a trumpet.
The effect not only fascinates astrophysicists but also frustrates efforts on Earth to create sustained energy sources through fusion. Experimental fusion reactors force atomic particles to fuse together and release energy as plasma. The plasma is contained within a "magnetic bottle," or a cage of magnetic field lines, so that the high plasma temperatures can maintain the fusion reaction.
However, magnetic reconnection can break the magnetic bottle and allow plasma to reach the colder walls of the reactor where fusion will not sustain itself.
Drake became interested in the topic when he looked at early fusion studies and realized how many theories at the time were "dead wrong" about magnetic reconnection. To learn more about the phenomenon, he had to look beyond Earth.
Get the world’s most fascinating discoveries delivered straight to your inbox.
"I started realizing some of the best magnetic reconnection data is in space," Drake said.
During a sabbatical at the University of California-Berkeley, the theoretical physicist happened to work in the same office as Tai Phan, an observational physicist who was looking at magnetic field data from the European Space Agency's Cluster satellites.
"I was doing theory, Tai was doing data and we suddenly saw this correspondence," Drake marveled. "It was purely accidental."
The four Cluster satellites crossed through a turbulent plasma region just outside Earth's magnetic field in January 2003, when they happened to run into an area where magnetic reconnection had occurred. Physicists thought such areas, known as electron diffusion regions, were just over six miles long and so spacecraft would probably miss them in the vastness of space.
Instead, a new look at the Cluster data showed that the electron diffusion region measured 1,864 miles long — 300 times longer than early theoretical expectations and still four times longer than seen in the latest astrophysics simulations. That also marked the first ever direct observations of magnetic reconnection in space.
Although the basic physics behind magnetic reconnection remain a mystery, Cluster promises that future missions have a good chance of further examining the phenomenon. One example is NASA's Magnetospheric Multiscale mission, which will consist of four spacecraft that study why the plasma particles can become "unfrozen" or unstuck from the magnetic field lines they normally travel along. Magnetic reconnection is simply the most "dramatic" example of this, Drake said.
Such an energy release amounts to a conversion of magnetic energy into particle energy, which can occur in black hole jets and drives solar flares. Drake hopes to someday create a computer model that can accurately describe the conversion process — and if scientists can also apply some understanding towards improving fusion reactors, so much the better.

