New Clues to How Memories Are Made During Sleep
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
While parts of the brain power down during sleep, other regions stay turned on, replaying the day's events and cementing memories.
Previous research suggested that this critical memory-making process depends on the hippocampus, sometimes called the old brain, communicating with the neocortex during sleep. But a new study shows the main interface between those two regions — the entorhinal cortex — also plays an important role in memory formation.
Mayank Mehta, a professor of neurophysics at UCLA, and his team examined these three brain regions in mice. They found that the entorhinal cortex showed what is called persistent activity even while under anesthesia. In humans, persistent activity is thought to mediate working memory while we're awake, such as when we concentrate on remembering directions or phone numbers. So the researchers were surprised to see such activity while the mice were knocked out and could not feel or smell or hear anything.
The researchers also found that the hippocampus was not driving this process, as had been previously assumed.
Mehta's team used a sensitive monitoring system to measure the activity of single neurons in the brain, which allowed them to see how activation in the different regions spread. They found that activation in the neocortex triggered the persistent activity in the entorhinal cortex, which continued even when the neocortex became inactive. And the persistent activity in the entorhinal cortex, in turn, sparked activity in the hippocampus.
"This suggests that whatever is happening during sleep is not happening the way we thought it was," Mehta said in a statement. "There are more players involved so the dialogue is far more complex, and the direction of the communication is the opposite of what was thought."
New information about the role of the entorhinal cortex could be helpful to scientists studying Alzheimer's disease, which starts in that part of the brain, the researchers said. The study was published online Oct. 7 in the journal Nature Neuroscience.
Get the world’s most fascinating discoveries delivered straight to your inbox.
Follow LiveScience on Twitter @livescience. We're also on Facebook & Google+.

