Scientists See Early Universe in Grains of Sand
Get the world’s most fascinating discoveries delivered straight to your inbox.
You are now subscribed
Your newsletter sign-up was successful
Want to add more newsletters?
Delivered Daily
Daily Newsletter
Sign up for the latest discoveries, groundbreaking research and fascinating breakthroughs that impact you and the wider world direct to your inbox.
Once a week
Life's Little Mysteries
Feed your curiosity with an exclusive mystery every week, solved with science and delivered direct to your inbox before it's seen anywhere else.
Once a week
How It Works
Sign up to our free science & technology newsletter for your weekly fix of fascinating articles, quick quizzes, amazing images, and more
Delivered daily
Space.com Newsletter
Breaking space news, the latest updates on rocket launches, skywatching events and more!
Once a month
Watch This Space
Sign up to our monthly entertainment newsletter to keep up with all our coverage of the latest sci-fi and space movies, tv shows, games and books.
Once a week
Night Sky This Week
Discover this week's must-see night sky events, moon phases, and stunning astrophotos. Sign up for our skywatching newsletter and explore the universe with us!
Join the club
Get full access to premium articles, exclusive features and a growing list of member rewards.
British poet William Blake once wrote that a world was contained in a grain of sand. Physicists have done one better, finding a surprising link between streams of flowing sand grains and the birth of the universe.
A new study in the latest issue of the journal Physical Review Letters finds that flowing sand grains show liquid-like behavior also witnessed in particle-collider experiments that simulate our universe's first moments.
"Nature plays the tricks that it knows how to play over and over again," said study team member Sidney Nagel of the University of Chicago.
Macroscopic particles visible to the naked eye and invisible particles smaller than an atom sometimes behave in similar ways. Nagel and his colleagues found that flowing sand grains create a cone-shaped "envelope structure" after striking a coin-like small, flat circular object.
Similar structures have been observed in the "quark-gluon plasma" experiments conducted at Brookhaven National Laboratory in New York with the Relativistic Heavy Ion Collider (RHIC). The quark-gluon plasma was a super hot and extremely dense soup of subatomic particles scientists think existed for a few millionths of a second after the Big Bang.
An experiment performed in 1883 that involved shooting water onto a small, circular target found that the water molecules also fan out into a thin cone before surface tension brought them back together to form a shape resembling a bell.
"That's the amazing thing about physics," Nagel said. "The laws you have at one level really are the same as at other levels, or at least influence what happens at other levels."
Get the world’s most fascinating discoveries delivered straight to your inbox.
Nagel says the result of his team's experiment could change how scientists interpret the RHIC data.
- Video: Universe in Grains of Sand
- Singing Sand Dunes: The Mystery of Desert Music
- The Greatest Mysteries in Science

